Supporting Information

Luminol-Hydrogen Peroxide-Horseradish Peroxidase Chemiluminescence Intensification by Kosmotrope Ammonium Sulfate

Hajime KARATANI

Kyoto Luminous Science Laboratory, Keihanna Plaza, Laboratory Wing, 1-7 Hikaridai, Seika-cho, Soraku, Kyoto 619-0237, Japan

E-mail: karatani@luminous-science.jp

Table of Contents

Scheme S1

HRP activity against $(NH_4)_2SO_4$ concentration

Fig. S1

Fig. S2

Fig. S3

Fig. S4

Fig. S5

Fig. S6

Dissociation of luminol

$$\underbrace{ \bigcup_{i=1}^{NH_1} \bigcup_{i=1}^{0} \bigcup_{i=1}^{N-H_1} \bigcup_{i=1}^{0} \bigcup_{i=1}^{N+1} \bigcup_{i=1}^{0} \bigcup_{i=1}^{N-H_1} \bigcup_{i=1}^{0} \bigcup_{i=1}^{N-H_1} \bigcup_{i=1}^{0} \bigcup_{i=1}^{N-H_1} \bigcup_{i=1}^{N-H_1}$$

Luminol monoanion (LH⁻)

First step of the reaction of HRP with H₂O₂

$$HRP(+3) + H_2O_2 \longrightarrow Compound I (+5) + H_2O$$
(S2)

Reaction of LH- with Compound I

Compound I (+5) +
$$(53)$$

Reaction of another LH⁻ with Compound II (Regeneration of HRP) 0

 NH_2

Compound II (+4) +
$$HRP (+3) + HRP (+3) + II$$
 (54)

Disproportionation of LH luminol diazaquinone

Luminol radical (LH-)

Luminol radical (LH·)

NIT

 NH_2 0

$$\begin{array}{c} \begin{array}{c} & & \\$$

Nucleophilic attack of HOOH (or HOO⁻), followed by the formation of luminol dixetane product

Cleavage of dioxetane, followed by the formation of excited 3-AP; and then light emission

In the presence of enhancer agent (SH); e.g., I-OH Compound I (+5) + SH \rightarrow Compound II (+4) + S· (S8) Compound II (+4) + SH \rightarrow HRP (+3) + S· (S9)

$$2S \cdot + 2LH^{-} \rightarrow 2LH \cdot + 2SH$$
 (S10)

Scheme S1 Reaction mechanism for luminol - H2O2 -HRP reaction in the absence and presence of an enhancer agent. Explanation for the reaction is described on the following page.

Considering that pK_{a1} of H_2O_2 is 11.62 (Fig. S1 (A) (Supporting Information)),¹ it exists as a fully protonated form in a weakly basic solution. In contrast, as pK_{a1} of luminol is 6.35 (Fig. S1 (B) (Supporting Information)),² it will behave mainly as the monoanion (LH⁻) in a weakly basic solution (Eq. (S1)). In the absence of an enhancer agent, HRP(+3) in the resting state is firstly oxidized by H_2O_2 to Compound I(+5), (Eq. (S2)). Compound I(+5) is subsequently oneelectron reduced with LH⁻ to yield a luminol radical (LH \cdot) and Complex II(4+), (Eq. (S3)). Further the reduction of Complex II(4+) with LH⁻ occurs to form another LH ·, resulting in the completion of a turnover of HRP (Eq. (S4)).^{3,4} The produced luminol radicals, possibly existing in equilibrium LH $\dot{z} = L^{-1} + H^{+}$ (Fig. S1 (C) (Supporting Information)),² undergo the disproportionation to form luminol diazaquinone (Eq. (S5)); and subsequently, H₂O₂ existing in large excess amount reacts with luminol diazaquinone to give rise to the excited 3aminophthalate (3-AP*) via the formation of the luminol dioxetane intermediate, followed by its decomposition (Eqs. (S6) and (S7)). Finally, 3-AP* emits photon when returning to the ground state (Eq. (S7)).⁵ In the presence of an enhancer agent (referred to as SH), Compound I(+5) reacts with SH to produce enhancer radical (S) and Compound II(+4), which sequentially reacts with another SH to produce S· (Eqs. (S8) and (S9),^{6,7} followed by the formation of LH· via a reaction of S[·] with LH⁻ (Eq. (S10)). Following reaction steps are common to those free of an enhancer agent (Eqs. (S5), (S6), and (S7)).

Reference:

- 1. "*CRC Handbook of Chemistry and Physics*", Editor-in-Chief, J. R. Rumble, Jr., CRC Press, Boca Raton, **2019**, 5-104.
- 2. J. Lind, G. Merényi, and T. E. Eriksen, J. Am. Chem. Soc., 1983, 105, 7655.
- 3. P. M. Prichard and M. J. Cormier, Biochem. Biophys. Res. Commun., 1968, 31, 131.
- 4. M. J. Cormier and P. M. Prichard, J. Biol. Chem., 1968, 243, 4706.
- 5. K. -D. Gundermann and F. McCapra, "*Chemiluminescence in Organic Chemistry*", **1987**, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo.
- 6. T. P. Whitehead, L. J. Kricka, T. J. Carter, and G. H. Thorpe, *Clin. Chem.*, **1979**, *25*, 1531.
- 7. G. H. G. Thorpe and L. J. Kricka, in "*Methods in Enzymology*", ed. M. A. DeLuca and W. D. McElroy, Vol. 133, **1986**, Academic Press, Orlando, 331.

HRP activity against (NH₄)₂SO₄ concentration

Experimental procedures for the evaluation of the HRP activity in the presence of (NH₄)₂SO₄:

The experiments were carried out as follows; OPD was dissolved in the Tris (0.10 M)-HCl buffer solution (pH8.5) (10.0 mM) before use. The HRP solution was prepared from the HRP stock solution and diluted with the Tris (0.10 M) buffer solution (pH8.5) containing 3.5 M (NH₄)₂SO₄. The reaction was initiated according to the following manner: 1.50 cm³ of 100.0 mM H₂O₂ solution containing 1000ppm EDTA with various concentrations of (NH₄)₂SO₄ was mixed with 1.50 cm³ of the mixture of the Tris (0.10 M) buffer solution (pH8.5) containing various concentrations of (NH₄)₂SO₄ (5 vol) and 0.75 M NaOH (1 vol) in a quartz cell. The constituents of the final mixture are identical to those used for the CL reaction except for luminol-free. Next, 40 μ L of 10.0 mM OPD was added to the mixture. Finally, 20 μ L of 1.0 × 10⁻⁷ M HRP was added to the mixture and mixed rapidly, followed by monitoring absorbance at 417 nm at a 5 s interval for 5 min. In this system, the increase in absorbance at 417 nm corresponds to the formation of 2,3-diaminophenazine (DAP) (Eq. (S11)).¹

$$HRP$$

$$2OPD + 3H_2O_2 \rightarrow \rightarrow \rightarrow DAP + 6H_2O$$
(S11)

Reference:

1. S. Fornera and P. Walde, Anal. Biochem., 2010, 407, 293.

Fig. S1 Molar fraction of dissociated reactants as a function of pH.

(A) Hydrogen peroxide (H₂O₂), $pK_{a1} = 11.62^{1}$ (B) Luminol (LH₂), $pK_{a1} = 6.35^{2}$

(C) Luminol radical (LH·), $pK_a = 7.7^2$ (D) Ammonium ion (NH₄⁺), $pK_a = 9.25^1$

Vertical broken lines, pH of the reaction solution.

Calculation for molar fractions was carried out by using following equations:

 $[HA]/c_a = [H^+]/([H^+] + K_a); \quad [A^-]/c_a = K_a/([H^+] + K_a)$

HA; H₂O₂, LH₂, or LH \cdot : A⁻; HO₂⁻, LH⁻, or L⁻ \cdot

In the case of ammonium ion (NH₄⁺ \rightleftharpoons H⁺+NH₃), the conjugate base concentration (= [A]) is used for calculation.

Reference:

- 1. "CRC Handbook of Chemistry and Physics", Editor-in-Chief, J. R. Rumble, Jr., CRC Press, Boca Raton, **2019**, 5-104.
- 2. J. Lind, G. Merényi, and T. E. Eriksen, J. Am. Chem. Soc., 1983, 105, 7655.

Fig. S2 Absorption spectra of various concentrations of HRP prepared with pH8.5 tris (0.10 M)-HCl buffer solution in the presence of $3.5 \text{ M} (\text{NH}_4)_2\text{SO}_4$ and in its absence. The resultant absorption spectra were subjected to the 21-point smoothing using JASCO Spectra Manager ver. 2.

Fig. S3 Removal of background CL from luminol - H_2O_2 - HRP reaction in the presence of 3.2 M (NH₄)₂SO₄ by the addition of EDTA. Spectral measurement was carried out in a manner similar to those used for Fig. 1: a (blue), 0.166; b (orange), 1.166; c (gray), 2.166, d (yellow), 3.166; and e (light green), 4.166 min after the initiation of the reaction. Concentration of EDTA (ppm) in the reaction mixture is designated on each graph. Initial concentrations of H_2O_2 and luminol in the reaction mixture are 50.0 mM and 2.50 mM, respectively. HRP concentration in the reaction mixture; left dotted panel, 0 M; right dotted panel, 1.0×10^{-10} M. The ordinate scale for the CL reaction free of HRP is six times magnified as compared to that with 1.0×10^{-10} M HRP.

Fig. S4 Plots of integrated intensity against time after the initiation of the reaction at various concentrations of H_2O_2 (A), luminol (B), and Tris base (C). In all systems, concentrations of $(NH_4)_2SO_4$ and EDTA in the reaction mixture are 3.2 M and 500ppm. Concentrations in the reaction mixture: (A) luminol, 2.5 mM; Tris, 0.10 M: (B) H_2O_2 , 50 mM; Tris, 0.10 M: and (C) H_2O_2 , 50 mM; luminol, 2.5 mM. The chemiluminescence reaction was carried out in a manner similar to those used in Fig. 1. (A)-1, (B)-1, and (C)-1, CL time-courses; (A)-2, (B)-2, and (C)-2, plots of the integrated intensities of the spectrum recorded at 0.166 min against the concentration of each reagent. Open circles in (A)-2, (B)-2, and (C)-2, integrated intensity in the absence of HRP.

Fig. S5 Plots of relative activity of HRP against $(NH_4)_2SO_4$ concentration. Inset shows the time courses of absorbance at 417 nm at various concentrations of $(NH_4)_2SO_4$. Initial concentrations in the reaction mixture, [HRP] = 0.56 nM, $[H_2O_2] = 49$ mM, [OPD] = 0.13 mM. Activity measurement was carried out twice in each system. $[(NH_4)_2SO_4]/M$ in the reaction mixture; \bigcirc , 0; \bigcirc , 0.92; \bigcirc , 1.83; \bigcirc , 2.75; and \bigcirc , 3.20. \bigcirc (Inset), the composition of the reaction solution is identical to that used in the reaction of " \bigcirc , 1.83" except for HRP-free.

Fig. S6 CL output against HRP concentrations at sub-pM and pM levels in the presence of 3.2 M $(NH_4)_2SO_4$. (A) Changes in CL spectra (from 1st to 6th) as a function of time after the initiation of the reaction; CL spectra are obtained in a manner similar to that in Fig. 3. (B) Time-courses of CL outputs. All time-courses are extrapolated (broken line) to the time t = 0 according to the manner similar to that in Fig. 3. (C) Plots of CL intensities against the HRP concentration in the reaction mixture; (C)-1, the area of the first CL spectrum; and (C)-2, the total area of six spectra (from 1st to 6th). Coefficient of variation (CV = standard deviation/average intensity at each HRP concentration, n = 5) is designated in (C)-1 and (C)-2.